206 research outputs found

    The relationship between weight-related indicators and depressive symptoms during adolescence and adulthood: results from two twin studies

    Get PDF
    Background: The association between weight and depressive symptoms is well established, but the direction of effects remains unclear. Most studies rely on body mass index (BMI) as the sole weight indicator, with few examining the aetiology of the association between weight indicators and depressive symptoms. // Methods: We analysed data from the Twins Early Development Study (TEDS) and UK Adult Twin Registry (TwinsUK) (7658 and 2775 twin pairs, respectively). A phenotypic cross-lagged panel model assessed the directionality between BMI and depressive symptoms at ages 12, 16, and 21 years in TEDS. Bivariate correlations tested the phenotypic association between a range of weight indicators and depressive symptoms in TwinsUK. In both samples, structural equation modelling of twin data investigated genetic and environmental influences between weight indicators and depression. Sensitivity analyses included two-wave phenotypic cross-lagged panel models and the exclusion of those with a BMI <18.5. // Results: Within TEDS, the relationship between BMI and depression was bidirectional between ages 12 and 16 with a stronger influence of earlier BMI on later depression. The associations were unidirectional thereafter with depression at 16 influencing BMI at 21. Small genetic correlations were found between BMI and depression at ages 16 and 21, but not at 12. Within TwinsUK, depression was weakly correlated with weight indicators; therefore, it was not possible to generate precise estimates of genetic or environmental correlations. // Conclusions: The directionality of the relationship between BMI and depression appears to be developmentally sensitive. Further research with larger genetically informative samples is needed to estimate the aetiological influence on these associations

    An Investigation Into Physical Frailty as a Link Between the Gut Microbiome and Cognitive Health

    Get PDF
    The preservation of cognitive abilities with aging is a priority both for individuals and nations given the aging populations of many countries. Recently the gut microbiome has been identified as a new territory to explore in relation to cognition. Experiments using rodents have identified a link between the gut microbiome and cognitive function, particularly that low microbial diversity leads to poor cognition function. Similar studies in humans could identify novel targets to encourage healthy cognition in an aging population. Here, we investigate the association of gut microbiota and cognitive function in a human cohort considering the influence of physical frailty. We analyzed 16S rRNA gene sequence data, derived from fecal samples obtained from 1,551 individuals over the age of 40. Cognitive data was collected using four cognitive tests: verbal fluency (n = 1,368), Deary-Liewald Reaction Time Test (DLRT; n = 873), Mini Mental State Examination (recall; n = 1,374) and Paired Associates Learning from the Cambridge Neuropsychological Test Automated Battery (CANTAB-PAL; n = 405). We use mixed effects models to identify associations with alpha diversity, operational taxonomic units (OTUs) and taxa and performed further analyses adjusting for physical frailty. We then repeated the analyses in a subset of individuals with dietary data, also excluding those using medications shown to influence gut microbiome composition. DLRT and verbal fluency were negatively associated with alpha diversity of the gut microbiota (False-Discovery Rate, FDR, p &lt; 0.05). However, when considering frailty as a covariate, only associations between the DLRT and diversity measures remained. Repeating analyses excluding Proton pump inhibitor (PPI) and antibiotic users and accounting for diet, we similarly observe significant negative associations between the DLRT and alpha diversity measures and a further negative association between DLRT and the abundance of the order Burkholderiales that remains significant after adjusting for host frailty. This highlights the importance of considering concurrent differences in physical health in studies of cognitive performance and suggests that physical health has a relatively larger association with the gut microbiome. However, the frailty independent cognitive-gut microbiota associations that were observed might represent important targets for further research, with potential for use in diagnostic surveillance in cognitive aging and interventions to improve vitality

    Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderly women

    Get PDF
    Omega-3 fatty acids may influence human physiological parameters in part by affecting the gut microbiome. The aim of this study was to investigate the links between omega-3 fatty acids, gut microbiome diversity and composition and faecal metabolomic profiles in middle aged and elderly women. We analysed data from 876 twins with 16S microbiome data and DHA, total omega-3, and other circulating fatty acids. Estimated food intake of omega-3 fatty acids were obtained from food frequency questionnaires. Both total omega-3and DHA serum levels were significantly correlated with microbiome alpha diversity (Shannon index) after adjusting for confounders (DHA Beta(SE) = 0.13(0.04), P = 0.0006 total omega-3: 0.13(0.04), P = 0.001). These associations remained significant after adjusting for dietary fibre intake. We found even stronger associations between DHA and 38 operational taxonomic units (OTUs), the strongest ones being with OTUs from the Lachnospiraceae family (Beta(SE) = 0.13(0.03), P = 8 × 10-7). Some of the associations with gut bacterial OTUs appear to be mediated by the abundance of the faecal metabolite N-carbamylglutamate. Our data indicate a link between omega-3 circulating levels/intake and microbiome composition independent of dietary fibre intake, particularly with bacteria of the Lachnospiraceae family. These data suggest the potential use of omega-3 supplementation to improve the microbiome composition

    Higher dietary protein intake is associated with sarcopenia in older British twins

    Get PDF
    BACKGROUND: Sarcopenia, characterised by an accelerated loss of skeletal muscle mass and function, is associated with negative outcomes. This study aimed to evaluate factors associated with skeletal muscle strength, mass and sarcopenia, particularly protein intake, and to assess whether shared twin characteristics are important. METHODS: This study utilised cross-sectional data from a study of community-dwelling twins aged ≥60 years. Multivariable logistic regression and between- and within-twin pair regression modelling were used. RESULTS: Participants (n = 3,302) were 89% female (n = 2,923), aged a mean of 72.1 (±7.3) years and composed of 858 (55%) monozygotic, 709 (45%) dizygotic twin pairs and 168 individual lone twins. Using optimal protein intake as the reference group (1.0-1.3 g/kg/day), there was no significant association between protein intake (neither high nor low) and low muscle strength, or between low protein intake and sarcopenia (odds ratio (OR) 0.7; 95% confidence interval (CI) 0.39-1.25; P = 0.229) in unadjusted models. High protein intake (>1.3 g/kg/day) was associated with low muscle mass (OR 1.76; 95% CI 1.39-2.24; P < 0.0001), while low protein intake was protective (OR 0.52; 95% CI 0.40-0.67; P < 0.0001). High protein intake was associated with sarcopenia (OR 2.04; 95% CI 1.21-3.44; P = 0.008), and this was robust to adjustment for demographic, anthropometric and dietary factors. The association between muscle strength and weight, body mass index, healthy eating index, protein intake and alpha diversity was not significantly influenced by shared twin factors, indicating greater amenability to interventions. CONCLUSIONS: High protein intake is associated with sarcopenia in a cohort of healthy older twins

    Signatures of early frailty in the gut microbiota

    Get PDF
    Background: Frailty is arguably the biggest problem associated with population ageing, and associates with gut microbiome composition in elderly and care-dependent individuals. Here we characterize frailty associations with the gut microbiota in a younger community dwelling population, to identify targets for intervention to encourage healthy ageing. Method: We analysed 16S rRNA gene sequence data derived from faecal samples obtained from 728 female twins. Frailty was quantified using a frailty index (FI). Mixed effects models were used to identify associations with diversity, operational taxonomic units (OTUs) and taxa. OTU associations were replicated in the Eldermet cohort. Phenotypes were correlated with modules of OTUs collapsed by co-occurrence. Results: Frailty negatively associated with alpha diversity of the gut microbiota. Models considering a number of covariates identified 637 OTUs associated with FI. Twenty-two OTU associations were significant independent of alpha diversity. Species more abundant with frailty included Eubacterium dolichum and Eggerthella lenta. A Faecalibacterium prausnitzii OTU was less abundant in frailer individuals, and retained significance in discordant twin analysis. Sixty OTU associations were replicated in the Eldermet cohort. OTU co-occurrence modules had mutually exclusive associations between frailty and alpha diversity. Conclusions: There was a striking negative association between frailty and gut microbiota diversity, underpinned by specific taxonomic associations. Whether these relationships are causal or consequential is unknown. Nevertheless, they represent targets for diagnostic surveillance, or for intervention studies to improve vitality in ageing

    Gut microbial diversity is associated with lower arterial stiffness in women

    Get PDF
    © The Author(s)2018 All rights reserved. Aims The gut microbiome influences metabolic syndrome (MetS) and inflammation and is therapeutically modifiable. Arterial stiffness is poorly correlated with most traditional risk factors. Our aim was to examine whether gut microbial composition is associated with arterial stiffness.Methods We assessed the correlation between carotid-femoral pulse wave velocity (PWV), a measure of arterial stiffness, and and results gut microbiome composition in 617 middle-aged women from the TwinsUK cohort with concurrent serum metabolomics data. Pulse wave velocity was negatively correlated with gut microbiome alpha diversity (Shannon index, Beta(SE)= -0.25(0.07), P = 1 10 -4 ) after adjustment for covariates. We identified seven operational taxonomic units associated with PWV after adjusting for covariates and multiple testing—two belonging to the Ruminococcaceae family. Associations between microbe abundances, microbe diversity, and PWV remained significant after adjustment for levels of gut-derived metabolites (indolepropionate, trimethylamine oxide, and phenylacetylglutamine). We linearly combined the PWV-associated gut microbiome-derived variables and found that microbiome factors explained 8.3% (95% confidence interval 4.3–12.4%) of the variance in PWV. A formal mediation analysis revealed that only a small proportion (5.51%) of the total effect of the gut microbiome on PWV was mediated by insulin resistance and visceral fat, c-reactive protein, and cardiovascular risk factors after adjusting for age, body mass index, and mean arterial pressure. Conclusions Gut microbiome diversity is inversely associated with arterial stiffness in women. The effect of gut microbiome composition on PWV is only minimally mediated by MetS. This first human observation linking the gut microbiome to arterial stiffness suggests that targeting the microbiome may be a way to treat arterial ageing

    Pre-pandemic mental health and disruptions to healthcare, economic and housing outcomes during the COVID-19 pandemic: evidence from 12 UK longitudinal studies

    Get PDF
    Background: The COVID-19 pandemic has disrupted lives and livelihoods, and people already experiencing mental ill health may have been especially vulnerable. Aims: Quantify mental health inequalities in disruptions to healthcare, economic activity and housing. Method: We examined data from 59 482 participants in 12 UK longitudinal studies with data collected before and during the COVID-19 pandemic. Within each study, we estimated the association between psychological distress assessed pre-pandemic and disruptions since the start of the pandemic to healthcare (medication access, procedures or appointments), economic activity (employment, income or working hours) and housing (change of address or household composition). Estimates were pooled across studies. Results: Across the analysed data-sets, 28% to 77% of participants experienced at least one disruption, with 2.3–33.2% experiencing disruptions in two or more domains. We found 1 s.d. higher pre-pandemic psychological distress was associated with (a) increased odds of any healthcare disruptions (odds ratio (OR) 1.30, 95% CI 1.20–1.40), with fully adjusted odds ratios ranging from 1.24 (95% CI 1.09–1.41) for disruption to procedures to 1.33 (95% CI 1.20–1.49) for disruptions to prescriptions or medication access; (b) loss of employment (odds ratio 1.13, 95% CI 1.06–1.21) and income (OR 1.12, 95% CI 1.06 –1.19), and reductions in working hours/furlough (odds ratio 1.05, 95% CI 1.00–1.09) and (c) increased likelihood of experiencing a disruption in at least two domains (OR 1.25, 95% CI 1.18–1.32) or in one domain (OR 1.11, 95% CI 1.07–1.16), relative to no disruption. There were no associations with housing disruptions (OR 1.00, 95% CI 0.97–1.03). Conclusions: People experiencing psychological distress pre-pandemic were more likely to experience healthcare and economic disruptions, and clusters of disruptions across multiple domains during the pandemic. Failing to address these disruptions risks further widening mental health inequalities
    • …
    corecore